
TO PLEASE BOTH THE EAR AND THE EYE:
MOSES MENDELSSOHN, EQUAL TEMPERAMENT

AND THE DELIAN PROBLEM
An introduction to and annotated translation of
"Versuch, eine vollkommen gleichschwebende
Temperatur durch die Construction zu finden"

David Halperin

Str. "Non pud ingannarsi facilmente l'udito?"
Bar. "Facilissamente...

nulla dimeno, il purgato udito...
non s'inganna cosi di leggiero."

V. Galilei, Dialogo, p. 32

In 1761 Friedrich Wilhelm Marpurg included in Volume V of his
Historisch­Kritischen Beytrdgen zur Aufnahme der Musik (Part 2, pp. 95­
109) an essay giving a geometrical construction for equal­tempered
division of the octave. In Marpurg's introduction to the essay he states
that he is not at liberty to disclose the author's name, but in 1777, the
index appended to Volume VI named Moses Mendelssohn as the author.
In the intervening sixteen years, many had thought it to be the work of
the theoretician Johann Philipp Kirnberger, and it is possible that
Marpurg wanted to set the record straight by finally giving the credit to
his friend Mendelssohn. Today there is no doubt that the attribution to
Mendelssohn is the correct one.1

For Moses Mendelssohn ­ thinker, philosopher and epitome of the
Jewish Enlightenment (Haskalah)of the time ­ this essay is unique. His
interest in music does not reveal itself in his other writings, except for a
generalized praise of the art in his aesthetic treatises. Mendelssohn was,
of course, no stranger to music: his letters make a number of references
to discerning attendance at concerts in Berlin, and he even took lessons

1 The authorship question is fully discussed in an introduction by H. Borodianski >n

Mendelssohn (1931,1972: xxxvi­xli(.
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with Kirnberger in theory and keyboard playing. His keyboard skills
never developed beyond the level of "playing a minuet slowly,"
according to the testimony of Nicolai, but he mastered music theory:
he modestly reported of himself that he "knows ... all the musical
proportions, chord inversions, vairous combinations of notes etc."
Gerber, in his Tonkiinstler­Lexikon, considered Mendelssohn "an
outstanding music theoretician/'2

An interest in music was never an unusual thing for scientists and
philosophers, since the time of Pythagoras, if not earlier. Traditionally,
music was included in the quadirvium, along with arithmetic, geometry
and astronomy. The scientific revolution around 1600 attracted Kepler,
Stevin (who proposed that equal temperament is not only useful but even
"natural"), Beeckman and Descartes in musical investigations; later
D'Alembert and Diderot the encyclopedists and Newton, Euler and
other mathematicians addressed themselves to musical theory and
accompanying problems.

Mendelssohn numbered among his firends most of the outstanding
Berlin musicians of his time, including Agricola, Quantz, Kirnberger,
Marpurg and others. It was from Kirnberger that he came to know the
mathematical dififculties involved in equal temperament, and that these
problems were considered vital to the development of music. They had
been treated earlier ­ especially by Neidhardt and Werckmeister ­ but
no completely satisfactory solutions to the problem of constructing an
equal­tempered scale were yet available; practicing musicians and
instrument builders used approximations or cut­and­try methods for
dividing the octave which, good as they were, did not stand up to the
rigorous scrutiny of mathematicians as being theoretically sound.

Mendelssohn knew mathematics; he had studied the subject along
with philosophy, and was considered to be, along with Euler and Jacobi,
one of Berlin's ifnest mathematicians. His lecture on probability, given
before the leading intellectuals of his day, was ifrmly grounded in the
mathematical theory of the subject.3 The possibility of applying his
mathematical knowledge to a musical problemmust have appealed to his
intellectual cuirosity, for he agreed readily to Kirnberger's proposal to
ifnd a solution.

2 Mendelssohn 1931,1972: xxxix.
3 Mendelssohn 1931,1972:. xxxviii. Mendelssohn's notebooks also contain some mathema­

tical writings, which demonstrate his practical approach to geometry. Altmann (1973) has a
number of references to Mendelssohn's interest in mathematics.
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444 David Halperin

The problem is simply stated: equal temperament requ/resthat a11 the
intervals between adjacent notes in a chromatic octave oftwelve notes be
equal or in other words that all semitones, both chromatic and diaton1c'
be equal. In physical terms, this requires that there be a constant rat10
between the lengths of strings sounding adjacent semitones (assuming
the strings to beof equal thickness and density and under eclual tens1on;
the monochord is the usual metaphor for this). Since the rati0 of the
interval of an octave is 2:1, the ratio of the equal­tempered semitone
must be the twelfth root 0f24 But it can be shown *at this rati0 cannot
be constructed with unmarked straightedge and comPass' the tools
classically admitted in geometric constructions, so the Problem is how t0
carry out the "impossible" construction.

This problem was known, in another guise, to the Greeks; k was
treated by (among others) Newton, whose solution, like other solutions
that had been proposed earlier, depended on violating the rules of
straightedge­and­compass construction5 by the artiifceof making marks

4 This was ifrst noted in Europe in the 1580s by Simon Stevin, the inventor of decimal
fractions in his "De spiegheling der singconst." (For a modern translation see "On the
theoryof the artof singing," in: The Principal WorksofSimon Stevin, tarns1. AD■ Fokker­
Amsterdam, 1966) . . .^,, ,

5 See "Ruler and Compasses," in Hudson (1953). The standard restrictions Permlt only (a)
describing a circle (or an arc thereoO with a given point as center and Wlth a 81ven lengtxhr aS
radius■ and (b) drawing a straight line segmentofany lens* through tw0 81ven P01nts. New
points are won only as the intersectionsof two lines, or of a line and an arc' or oftwo arcs.
The limitation to the use of straight lines and circles ™plies that the on'y mstruments
available are straightedge and compass; the straightedge may be of unlimlted (but of course
ifnite) length, and the compass may be opened as wide as des1erd.
These restrictions define canonical straightedge­and­compass construction, wneer tne
straightedge is not to be marked (a marked straightedge is called a ruler) and the compass is

of the "collapsing" kind, not retaining its setting once the Point has been hfted from the
paper The restrictions on the tools would seem to imply that a length cannot be transferred
from one line to another, but in fact there is a simple construction under the stnct rules
which does just that; for this reason, constructions are commonly given implicitly assuming
a non­collapsing compass which can act as dividers. Other constructions assumed because
they are simple and well known include bisecting a line segment, erecting a perpendicular t0
a given line through a given point, drawing a parallel to a given line through a S1ven P01nt'
and bisecting an angle. ,. ,
In algebraic terms, it follows that a construction is possible ifand only if *e numbers whlch
define the quaesta can be derived from the given elements by a ifnite number of rat1onal
operations (the ofur elementary operations of arithmetic­addition, subtraction, multl­
plication and division) and/or the extractionof square roots. Incidentally, ll can be shown
that compass alone or, if a single pre­existing circle be given, straightedge alone■ or ,

straightedge and "rusty" compass (whose setting cannot be changed­this 1S usua"y called
an Einheitsdreher) can construct anything that is possible under the standard rules■ On th1s'
see Chapter 17 of Gardner (1979(.

Catalog TOC <<Page>>Catalog TOC <<Page>>

http://www.magnespress.co.il/website_en/index.asp?action=show_categories&type=1&agent_camp=9724001
http://www.magnespress.co.il/website_en/index.asp?action=show_categories&type=1&agent_camp=9724001


To Please Both the Ear and the Eye 445

on the straightedge. It was Newton's method that Mendelssohn applied
to the musical problem.

Mendelssohn's description of Newton's method (which was actually
based on earlier methods, as Newton himself indicates) is in three
sections. First, he presents the problem, and argues that approximations,
while "seem[ing] equal­tempered even to the most sensitive ear," are not
wholly satisfying to the geometer, who seeks proofs and rigor. On the
other hand, a "true" geometirc construction is impossible; Mendelssohn
then suggests that the compromise of a "mechanical" construction (the
term is Newton's) can please both the ear and the intellect.

Next he gives Hero's method for ifnding two mean proportionals
between two given lengths, which he calls the simplest (Mendelssohn
refers the reader elsewhere for its proof). For its practical convenience,
however, Mendelssohn goes to Newton's method, reproducing it almost
'iterally. He also gives a Euclidian proof of the validity of this
construction.

Finally, step­by­step instructions for dividing the octave into twelve
equal semitones are given, based on Newton's method augmented by the
usual procedure for ifnding a length x so that x:a = b:c, where a, b and c
are given, so that the equal­tempered division need be carired out only
once and then constitutes a template for the division of a string of any
length. These step­by­step instructions are presented in simple and
practical terms for the draftsman, who is not necessaily knowledgeable
of geometry or of the theory of geometrical constructions.
It is this emphasis on practicality which most characterizes

Mendelssohn's essay. He is well aware that he has discovered nothing
new but is "standing on the shoulders of giants," as did Newton; his
concern is with "selling" the idea that the "mechanical" construction is
both acceptable and feasible. He addresses many audiences: musicians,
music theorists, instrument builders, mathematicians and draftsmen. His
arguments are stated explicitly and convincingly but never become
polemic (Mendelssohn reserved his public polemic for philosophical and
social debates).

We cannot know the extent to which the construction described in
this essay was actually put to use; one guesses that it had no practical
application. Most instrument builders probably preferred ­ as they do
today ­ to measure their string and pipe lengths and their fret
placements according to previously calculated lengths (tables of these
lengths were available), rather than to construct them. Mathematicians
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445 David Halperin

would be familiar with Newton without Mendelssohn's recommenda­
tions. As one of the arguments against the use of equal temperament 1S

that it is not "natural" (Stevin was alone in claiming that it is), musicians
and mUsic theorists might well have regarded the essay as an imPlic1t
defenseof equal temperament; this was a time when equal temperament
was beginning to win the day on its way to eventual dominance 1n the
musical world anyway (not yet achieved; see fn. 30)> but PerhaPs the
mathematical side ofMendelssohn's mind found here an opportunity t0

join with the musical side.

Moses Mendelssohn
Essay on Finding an Exact Equal Temperament

by Geometrical Construction

For many years attempts have been made to express equal temperament
in [rational] numbers.7 The impossibility of accomplishing

6 The original German text is reprinted in Mendelssohn (1931/1972); the translation here is
from this edition. I would like to thank Prof. Gisele Luther of Case Western Reserve
University ofr her help in understanding the text; errors and infelicities in the translation
are mine alone. .

7 Most early luthiers used rational approximations for Pacing the ferts; the most PQPular one
(and quite a good one, well within the bounds of the accuracy needed lf we conslder th^
stretching of a string when it is depressed by ifngering) was 17:18 for the equal­tempered
semitone, as attested by Mersenne (Harmonie Universelie, III, 48), among others (see
Appendix I ofr another luthier's rule). This differs from the "true" equal­tempered value by
only 0 06o/o. the octave obtained from applying this ratio twelve times is Just 0.73O/o 100
small vincenzo Galilei endorsed this approximation as well (Dialogo della musica antica et
della moderna, p. 49). Mersenne (op. cit., p. 68) also gives another approximation: 11

amounts to setting the major third ­ or, rather, 4 "equal" semitones ­ equal t0
8/317/2 This is geometrically constructible, since the only root involved 1S the S1uare root
(see fn 5). and as only the integers 2 and 3 are used the construction is a convenient one'
andthese numbers echo Pythagorean theory. (One is remindedof the approximation 0[as
3+ ^2 / 10.) The octave obtained from this approximation is only 0.150/0 t00 smal1■ For
other approximations see Appendix II■

The celebrated philosopher Thomas Hobbes published ^d "proved" a geometric
construction using Mersenne's second approximation ("the duplication of the c"bue'
hitherto sought in vain"). See Molesworth (1966: vol. 7, 59­68 and Plate 46 in vol. 11) Tife
quotation above is from the dedication (p. 3). As Hinnant comments, "Hobbes clearly
failed to perceive his own limitations as a mathematician" (Hinnant 1977: 25).
A curious approximate construction was published in 1743 by Daniel Strahle; for details see
Murray Barbour (1951: 65­68). See also Dudley (1987:95­96(.
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this has, to be sure, been crystal­clear;8 but we have made do with
approximations to the true values while keeping the errors unnoticeable.
A trained ear can detect uncommonly small differences, but even the best
trained sense of hearing is not so sharp that it may not be deceived. It
was easy to ifnd a harmonic9 ratio which will seem equal­tempered even
to the most sensitive ear. A mathematical construction has seldom been
considered. It is known that this is possible, and that the required lengths
can thus be found without the slightest error; but this has been
considered inconvenient, presumably because a purely geometrical
constructionof the required lengths demands the use of higher curves,10
which admittedly cause indescribable practical dififculties. Neidhardt,11

8 The impossibility of expressing roots in general (square roots excepted) as rational
numbers was known to the Greeks: the classic "Delian Problem"of duplicating the cube
­ constructing a cube with double the volume of a given cube ­ is the best­known
example, its solution involving as it does the cube rootof2 (see fn. 19). The impossibility
of two other constructions were known to the Greeks: the trisection of an angle and the
quadrature of a circle (construction of a square whose area is equal to that of a given
circle). Proofof their impossibility was beyond Greek mathematics, however, and had to
wait until the nineteenth century (see fn. 21). (The trisection problem is, mathematically,
of the same nature as the Delian problem, while the quadrature problem's impossibility is
due to the transcendency of )

9 I.e., rational. Mendelssohn here assumes a classical interpretation of the word
"harmonic," one which goes back to ancient Greek theory and exemplifies the mutual
relations of mathematics and music.

10 An unfortunate but common misnomer; the circleis just as much a "higher curve" as aer
the other conic sections ­ parabola, hyperbola and ellipse. Newton was aware of this, of
course, and wrote:
But it is not the Equation, but the Description that makes the Curve to be a Geometircal
one. The Circle is a Geometrical Line, not because it may be expressed by an Equation,
but because its Description is a Postulate. It is not the Simplicityof the Equation, but the
Easiness of the Description, which is to determine the Choice of our Lines for the
Construction of Problems. For the Equation that expresses a Parabola, is more simple
than That that expresses a Circle, and yet the Circle, by reason of its more simple
Construction, is admitted before it. The Circle and the Conick Sections, if you regard the
Dimension of the Equations, are of the same Order, and yet the Circle is not numbered
with them in the Construction of Problems, but by reason of its simple Description, is
depressed to a lower Order, viz. that of a right Line ... Equations are Expressions of
Arithmetical Computation, and properly have no Place in Geometry ... ["Appendix for
the Linear Construction of Equations," in D.T. Whiteside, Universal Arithmetic.^ Or, A

Treatiseof Arithmetical Composition and Resolution, 226­227 {The Mathematical Works
of Isaac Newton, vol. 2), New York/London, 1967 (facsimileof the London 1728 edition)].
A better, albeit somewhat awkward, term for "higher" in this context might be "less
simple of construction."

11 Johann Georg Neidhardt composed a little treatise called Beste und leichteste Temperatur
des Monochordi, vermittelst welcher das heutiges Tages brauchliche Genus Diatonico­
Chromaticum also eingerichtetwird (Jena, 1706); but here Mendelssohn quotes, somewhat
imprecisely, Neidhardt's Sectio canonis harmonici (Konigsberg, 1724(.
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443 David Halperin

who has done much ofr temperament, states the following: "As t0
geometrical construction: One geometric mean line is found yt means of
a line and a circle, but two [means] require circle and parabola, circle and
asymptotic hyperbola, circle and hyperbola, or ellipses, infinities, etc­ M
this does not concern us," Neidhardt adds, "because it is much> much
more convenient to make use of airthmetical approximations by the
canone harmonico, inasmuch as the ear is thus satisifed, although
Reason not at all/'

But how? If both the ear and the mind can be satisfied, and easily at
that, is it not even easier when the ear alone is satisifed through
arithmetical approximation? A geometric construction of the mean of
two given lines cannot be accomplished without the help of higher
curves, which have their dififculties; but there exists a kind of
construction called mechanical, which is easily carried out and which
is just as exact as the geometircal one.12 The geometer rejects i1; not for its
inaccuracy but out of geometric obstinacy. He does not want t0 seek
anything blindly, nor to use an instrument blindly and afterwards to see
if he has used it correctly; he would rather always know in advance
where to ifnd what he desires and exactly to which point t0 bring the
instrument. But with the so­called mechanical construction one often has
to place the instrument at random and then move it to and fr0 until the
proper place for it is ofund.If one does not wish to be obstinate, one can
make use of ^ mechanical construction ­ and I believe that musicians
have little reason to be obstinate. At least one can try it and see whether
the required equal temperament can be found far more easily and more
exactly than by use of the common arithmetical approximation. I shall
ifrst set out separately the mathematical bases which Prove the
correctness of the construction, and afterwards specify, expressly and
birelfy, the rules the mechanical draftsman is to follow.

12 Newton (1728(: "that [construction] is Geometrically [italics original] more simple which /s
determined by the more simple drawing ofLines... I am here sollicitous not for a
Geometrical Construction, but any one whatever, by which I may the nearest Wav f1nd
the Roots of Equations of Numbers." Nowadays the appellation "geometrical" is often
applied to constructions which Newton (and Mendelssohn) termed "mechanical"; those
which make use of the straightedge and and compass according t0 the st"ct rules (see fn■

5), in Newton's terms "geometrical," are today often called "Euclidian."
13 The reference is probably to the 17:18 ratio mentioned above (fn. 1(.
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For equal temperament consists of thirteen strings of equal thickness
and under equal tension,14of which the last is the octaveof the first, and
the others, which stand at equal distances one from the other, produce
the same interval; i.e., they stand in the same ratio one to another. This is
achieved when 13 lengths are found which follow a constant ratio/5 with
the ratioof the ifrst to the thirteenth beingas2 to 1. For when this is the
case, all the strings, equidistant16 one from another, will give the proper
intervals, with the last [string] being the octave of the ifrst.

Let the ifrst be C and the thirteenth c;17 to be found then are eleven
mean­proportional lines a, b, d, e, etc. between C and c, such that
C:a = a:b = b:d = d:e = e:f = f:g = g:h = ... = l:m = m:c. Then the
ifrst is to the seventh as is the seventh to the thirteenth; furthermore, the
ifrst is to the fourth as is the fourth to the seventh, and the seventh is to
the tenth as is the tenth to the thirteenth. So the seventh is found as he
mean of the first and thirteenth, the fourth as the mean of the ifrst and
seventh, and the tenth as the mean of the seventh and thirteenth.
Musicians call the ifrst C, the fourth d", the seventh P, the tenth a and
the thirteenth c.

The construction of these lines involves the use of straight lines and
circles, and [so] is purely geometrical:18 For let AB be the lengthof the C

14 Mendelssohn here assumes that the 13 stirngs are allofequal thickness and density, which
will be the case if they are all cut from one uniform wire, or, what amounts to the same
thing, if "strings" is taken to mean lengths on a monochord.

15 This ratio is, ofcourse, the twelfth root of2(1 .05946+ ) , but Mendelssohn will speak of it
in terms of mean proportionals, which in the case of only one mean proportional between
two lengths is simply constructed.

16 Musically, that is.
17 A certain confusion for the reader begins here: Mendelssohn uses letters of the Latin

alphabet both for note­names and for points in his diagrams and explanations of them.
These might have been better differentiated and better understood if he had reserved the
capital letters for the geometric points and the lowercase letters for note­names, with, say,
c' for the higher c; another solution would be to use Greek letters for the geometirc points.
Furthermore, Mendelssohn follows classical models in denoting both a note and the
string producing that note by the same letter; this practice is not so confusing, but it is not
always unambiguous. The scale in Mendelssohn>s notation is, then: C cis d disefifs g gis
abh c (note that Mendelssohn uses uppercase C for the lowest note of the octave which
continues d, e, ...and ends with lowercase c). I have transcribed this as: Cc#dd#eff*gg#
abbb c.

18 By "these lines" are meant the lines for d", f* and a, dividing the octave into four equal
parts. The construction for a (single) mean proportional between any two given lengths is
well known. Mendelssohn here gives the usual method, giving f* between C and c, and
adds to it a second stage which produces d# as the mean proportional between C and f" on
the one hand, and a as the mean proportional between f* and c on the other.
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stirng (Fig. I19). Describe the semicircle ADEB with the center c, and
erect at c the perpendicular cD. Draw the line AD; then AB:AD =
AD:Ac. Mark offAF equal to AD and erect the perpendicular FE. Draw
AE; then AB:AE = AE:AF. Draw on AF the semicircle AHF with
center G; erect the perpendicular cH and draw AH: then FA:AH =
AH:Ac. All this is in accordance with known and proven geometrical
methods. Thus AB is the length of the C stirng, AE of the d* string, AD
or AF the length of the P stirng, AH the length of the a stirng, and Ac or
cB or cD the length of the c stirng; and these stand in constant ratio, so
that C­<I# = d#­f# = f#­a = A­c, since:

AB:AE = AE:AF
therefore AB:AF = AE2:AF2
furthermore AF:AH = AH:Ac
therefore AF:Ac = AH2:Ac2
Also, it will be true that:
AB:AF = AF:Ac (since AF = AD)
then AE2:AF2 = AH2:Ac2
consequently AE:AF = AH:Ac
Therefore:
AC(=C):AE( = d*) =AE:AF(= f*) =AE:AH( = a) =AH:AC(= c) ,
which was to be proved.
We have accomplished the first and easiest step, namely finding three

means between C and c. Now the difficulty is in the task of dividing each
of these intervals with two mean proportional lines, thus making from
the ifve constant­proportional lines [already] found, thirteen. For if all
members of a constant progression are divided into the same number of
mean proportional of terms, then these terms also form a [single]
geometirc progression, as the following shows. Given that a:b = b:c, and
that the number of constant­proportional terms inserted between a and
b, and also between b and c, is = m; let the last term beforeb bee and
the ifrst term after b be f, then we have:

a:b = em+1:bm+1
furthermore b:c = bm+1:fm+1
now since a:b = b:c, thenem+1:bm+1 = bm+1:fm+1'
and so e:b = b:f and the progression proceeds unbroken.
So if we could divide each of the four intervals already found with

two mean proportionals, we would have the required thirteen lines, and
therefore also the equal temperament.

19 For Mendelssohn's ifgures, see Appendix HI.
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It depends, then, solely on the well­known problema deliacum,20
which made such a stir in ancient times. Plato, HeroofAlexandria, Philo
[of Byzantium], Apollonius [of Perga], Diodes, Pappus [of Alexandria],
Sporus [of Nicaea] and Erathostenes all proposed solutions at various
times, which can be found in Eutocius and in Stumps German
translation of Archimedes1 works.21 These great men found only

20 The Delian Problem gets its name from a legend related by Philoponus: The Athenians
were afflicted by a plague of typhoid fever, and consulted the oracle at Delos for a
solution to their woes. Apollo replied that his altar, which was cubical, must be doubled in

size, whereupon they doubled its edge; the plague intensified instead of abating. It then
became clear that the meaningof the oracle was to double the cube's volume, and thus the
hapless citizens were faced with the geometircal problem, which was shown by
Hippocrates (in the late iffth century) to depend on finding two mean proportionals. It
is sometimes called the Delphic Problem.

21 Mendelssohn's mention of Eutocius refers to the latter's commentary on Book II, Prop. I
of Archimedes' Commentaria in libros de sphaera et cylindro, dimensionem circuli, de
planorum aequilibris (referred to below as On the Sphere and Cylinder), which is called by
Knorr (1985) an "anthology of cube duplications." For a modern edition of Eutocius'
commentary, see Commentaria in libros de sphaera et cylindro, dimensionem circuli, de
planorum aequilibris, transl. J.L. Heiberg, in Archimedis opera omnia cum commentariis
Eutocii, vol. 4, Leipzig, 1915. Eutocius of Ascalon is dated to the end of the iffth or
beginning of the sixth century CE.
Plato: The ascription of a certain solution to Plato has its origin, apparently, in a passage
in Eutocius; the solution he cites is probably a misattribution of Eudoxus, known as a
disciple of Plato. However, Eratosthenes' Platonicus, as reported by Plutarch (Moralia,
718e), has Plato demanding a formal solution as opposed to the mechanical constructions
which had been devised.
Hero (late first century CE): In Hero's Belopoeica, he attributes this solution to the
Alexandrian Ctesibius, but it may also have been inspired by Philo.
Philo (third century BCE): Philo too wrote a work called Belopoeica in which he
presented a solution. A slightly different and more formal solution is attributed to Philo
by Eutocius; it is this solution which Zarlino repeats ("Consonantis Diapason in
Duodecim Semitonia equalis divisio," Supp/ A/us., p. 21 1).

Apollonius (around 200 BCE): The main source for Apollonius' method is Eutocius; it is
also known in Arabic translations.
Diodes (around 100 BCE) gives a solution using two parabolas, in his Prop. 10. See
Toomer (1976: 90­97). Diodes' solution using the cissoid (see fn. 23) is in his Prop. 15
(Toomer 1976: 235­243). Eutocius has Diodes' solutions in a somewhat altered form; he
does not mention the author of the two­parabola solution, who is generally assumed to be
Menaechmus; Mendelssohn undoubtedly refers to the solution which uses the cissoid.
Pappus (early fourth century CE): See Book VIII of the Collectionis quae supersunt,
Pappus (1986­1987, 1965).
Sporus (late third century BCE): Only Eutocius' account is known.
Eratosthenes (around 250 BCE): This too is known through Eutocius' catalog of
solutions,
here in the unusual form of a letter from Eratosthenes to the king Ptolemy.
Eutocius' accounts of solutions by Menaechmus, Archytas and Nicomedes are not
mentioned by Mendelssohn.
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mechanical methods; a geometirc construction of two mean propor­
tionals is impossible without the helpof higher curves. 22 Nicomedes was
the ifrst to invent the conchoid for this purpose; 23 later other higher
curves were used as well. Since we are not going to deal with higher
curves, but rather must carry out the construction with circle and

The traditional classification of solutions divides them into "linear/' "plane/' "solid,"
and construction by "neusis" ("verging"; Lat. "inclinatione"). In these terms, there is no
"plane" (straightedge and compass) solution to the Delian Problem. The constructions
listed by Eutocius can be classified as follows:
"Solid": Menaechmus (intersections of parabolas and hyperbola); Archytas (intersections
of cone, cylinder and torus);
"Linear": Diodes; Nicomedes (both using "higher" curves; see fn. 23);
"Neusis" (in these constructions this means swinging a marked straightedge): Hero; Philo;
Apollonius; Pappus; Sporus;
Mechanical devices (actually a form of "neusis"): Plato; Eratosthenes.
Archimedes showed that the finding of two mean proportionals is entailed in the problem
"Given a cone or cylinder, find a sphere equal [in volume] to the cone or cylinder" (On the
Sphere and Cylinder II, Prop. 1).

A fairly comprehensive overviewof these solutions is found in Knorr (1985). Heath (1921)
gives a brief account of the solutions in antiquity. Earlier histoires of the Delian Problem
includeHistoria problematis de cubi duplicandi by N. T. Riemer (1798) and another book
of the same title by C. H. Bieirng (1844).
The Sturm referred to by Mendelssohn isof course not Ambros Sturm, who published an
excellent but neglected work titled Das delische Problem (Linz, 1 895­97), but rather
Johann Christoph Sturm, with his Des unvergleichlichen Archimedes Kunst­Bucher oder
heutigs Tags beflndliche Schriften (Niirnberg, 1670).

22 A square root is easily constructed, as it is the mean proportional between 1 and the
number whose root is sought, but no other prime root admits a geometrical straightedge­
and­compass construction. An elementary proof of this assertion is to be found in
Chapter I and the ifrst sectionofChapter II of Klein (1956); for a more rigorous proof see
Meschkowski (1966) or Jones et al. (1991).
The impossibilities of cube duplication and of trisection of the angle were proved by
Wantzel in 1837, and that of circle quadrature by Lindemann in 1882; but the society of
would­be angle­trisectors, circle­squarers and cube­duplicators is still alive, as is most
amusingly documented by Dudley (op. cit.). And in Mendelssohn's time, in 1775, the
Paris Academy found it necessary to pass a resolution that no more "solutions" to the
three classic problems were to be examined, so as not to waste the time of the Academy
(Histoire de I'Academie royale, annee 1775, p. 61). See also fn. 7, on Thomas Hobbes.

23 The conchoid (or cochloid) of Nicomedes is a two­branched curve of the fourth degree
with both branches having a given straight line as their asymptote. Originally defined
mechanically, as a locus, it has as its analytic expression (x2 + y2)(x ­ a)2 ­ b2x2 = 0,
wherex= a defines the asymptote andb is a parameter which determines the precise
shape of the curve. In polar coordinates the expression is simpler: r =k+ a sec0.
Nicomedes also invented a mechanism or tool for tracing the conchoid. Klein (op. cit., p.
47) shows how the conchoid can be used to solve the problem of the trisection ofan angle;
for the Delian problem he uses the third­order cissoid of Diodes (Diodes himselfdid not
use the name cissoid for this curve, nor did Eutocius; but this is the name common since
the seventeenth century): x3 + (x­ a)y2 = 0, or in polar coordinates r =k+ a sin0 tan0.
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[straight] line alone; therefore the solution of Hero, among all those
reported by Eutocius, seems the simplest. Yet I shall add to this another
construction, to be found in Newton's Arithmetica Universali,24 which
seems to me the most convenient of execution.

Hero's instructions are carried out as follows: Suppose we want to
ifnd two mean proportionals between C and d#. Describe the lines AB
(= C) and AE (= d#) perpendicular to one another (Fig. 2)[see App.
Ilia], and complete the rectangle ABFE. Draw AF and BE, which bisect
each other at D. Place a straightedge on E and rotate it to and fro
around this point until DC becomes equal to DG. Now draw the line
CEG; then CF and GA are the required mean proportionals, and
therefore FC is the length of the c# string, and GA the length of the d
string. The proof can be found in Sturm.

If one proceeds with d# and f#, with P and a, and with a and c as
previously was done with C and d#, then one obtains e and f, g and g#, bb
and b ­ all the required lengths. This method is called mechanical
because the straightedge cannot be placed with certainty; one must ifrst
seek a location for it with DC = DG. But it is easily seen that this fact
does not prevent the method from being correct.

Newton, in his Arithmetica Universali (Appendix de Aequationum
constructio lineari), gives a number of other equally mechanical
constructions for this same problem, of which the following appears
more convenient than Hero's method.

He bisects the line AB, the ifrst of the two given lines (in our case =
C), at E (Fig. 3). With center at A and radius AE he describes the circle
EC, through which the second given line EC (in our case = d#) passes as
a chord. He then produces the lines EC and BC, without specific limits.
He puts the straightedge on A, and swings it to and fro between the lines
so produced until the segment GF becomes equal to AE or to EB, and he
draws the line FGA. When this is done, he states, then CF and AG are
the two mean proportionals between AB and EC; in our case CF = c#
and AG = d. Constructia nota est, Newton concludes.

24 The reference is to Newton's Arithmetica universalis; sive de compositione el resolutione
arithmetica liber, of which Mendelssohn possessed copies of both the ifrst edition
(Cambridge, 1707) and the third (Leyden, 1732). [References to this work are given here
to the English edition; Whiteside (1967).] Mendelssohn does not, as we see, claim to have
invented anything; his contribution is in adapting known methods to the musical problem
ofequal temperament and presenting the construction in an easily reproduced form. Vieta
gave essentially the same method in his Opera mathematica (Leyden, 1646), pp. 393­396.
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I will be permitted to demonstrate what Newton assumed as
obvious.25 Great geniuses attain in one step an end which ordinary
mortals need a whole series of keys to decipher. The proposition was
this: Describe a circle with A as center and with radius AE = EB, and
extend the chord EC and the line BC indeifnitely; let FA be placed so
that FG = AE; then it follows that AB:CF = CF:GA = GA:CE.

Proof:
Complete the circle, and produce FA to H (Fig. 4); draw AK through A
parallel to EC. Since AK||EC, it follows that
BA:BE = AK:EC.

Now BE = ./2AB; therefore also EC = 1/2AK.
Furthermore, the tirangles FGC and KGA have equal angles (since FC /s

by construction ||KA); so
CF:FG = KA:GA
and
CF:2FG = '/2KA:GA

But 2FG = AB (per hypoth.), 1/2KA = CE (per demonst.); therefore
CF:AB = CE:GA, and by inversion AB:CF = GA:CE. Similarly,
AB +GA:CF + CE = AB:CF = GA:CE. NowAB+GA = FH; so
AH + FG = AB andCF + CE = FE, therefore FH:FE = AB:CF =
GA:CE. Furthermore (by Euclid26, prop. XXXVII, L. 3),

FH:FE = FC:FL.

Then since FL = AG, and AL = FG (per hypoth.); so FH:FE = FC:AG.
Therefore, it was previously shown that FH:FE = AB:CF = GA:CE, and
so CF:AG = AB:CF = GA:CE. And finally, AB:CF = CF:AG =
AG:CE. Which is the proposition which was to be proved.

Find in exactly the same way the two mean proportionals between d#
and F, between F and a, and between a and c: one thus wins e and f, g
and g#, and bb and b. But this can be more easily done. For once C and
c# are found, the distance C­c# is known. And since C:c# = c#:d, so also
C­c#:C = c#­d:c#. The same ratio pertains for d­d#:d, d#­e:d#, e­f:e,
f.f*;^ f#.g:f', g­g#:g, g#­a:g#, a­b*:a, b*­b:b, and b­c:b, which can all be
shown in the same way. So one has but to erect a perpendicular with the

25 This slightly reproving compliment to Newton is misleading and somewhat unfair­
Newton did of course give a proof of the construction, albeit indirectly, earlier (on PP.
230­231). There he presented a construction for solving the reduced cubic equation x3 +
qx + r = 0. The two­mean­proportionals problem is a special and a simpler case of this;
its proof follows immediately from the proof of the more general case.

26 Mendelssohn used the Oxford (1703) edition of Euclidis quae supersunt opera omnia.
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length of the distance C­c# on the C string (Fig. 6), and complete the
tirangle; the rest of the distances c#­d, d­d#, d#­e, e­f, etc. are then quite
easily found, and the last distance b­c will, if all has been properly
observed, fall on the point c, as the midpoint of the large stirng, as any
beginner in mathematics knows.

I believe I have said all that is necessary for understanding the
proposed construction. A draftsman can take this on faith, if he does not
wish to be concerned with the mathematical basis. But he must exercise
all possible care to execute all exactly as directed. I shall try to make his
work as biref as possible, and also give directions which will show the
way, if he is sufficiently careful.

Descirbe the semicircle ADEB on the segment AB with C at its center
(Fig. 1) [see App. Illb], erect the perpendicular CD and draw AD. Mark
off AF with the lengthof AD, erect the perpendicular FE, and draw AE.
On AF descirbe the semicircle AHF with the midpoint G as its center,
erect the perpendicular CH, and draw AH (Fig. 5). Then mark
off AE from A for d#, AD from A for P, AH from A for a, and AC from
A for c.

Now bisect AB at E (Fig. 3)27 and descirbe the arc EC with radius AE
and center A; mark off the length of d# (from Fig. 5) from E to C,
producing this line as far as may be necessary. Similarly produce a line
indeifnitely from B through C. Then place a straightedge on A, and
move it to and fro until the segment FG on the straightedge, contained
between the two produced lines, is exactly as long as AE or AB; then
draw the line FGA.

The two lines CF and AG are then marked off (in Fig. 5) from A for
c" and d.Ifdesired, both lines, CF and GA, may be found from Figure 2,
according to the instructions previously given. One will thus be reassured
on finding that the segments GA and CF are identical in both
constructions; but it is not necessary to go to such an extent if one
takes sufifcient care in fitting FG.

Once the distance C­c# is found as accurately as possible, any
draftsman will know how to ifnd the others without tediously redrawing
Fig. 3 four times with the same care. [To this end,] draw the line CD (Fig.

27 This is the same as Newton's Figure 99 (which itself is only a simplification of his Figure
92), with the following substitutions in the names of points
Newton:KACXE Y
Mendelssohn:ABECG F
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6) with the length of C, erect the perpendicular CE = C­c#, and draw
ED. Mark offCA with the same length C­c#, and erect the perpendicular
AB, which will be = c#­d. Similarly, mark offAFwith the length AB and
erect the perpendicular FG, which will be = d­d#; in the same manner
obtain f­f#, f#­g, g­g#, etc.

Since the points d, d#, F, a and c have already been determined in the
previous construction, one has now an infallible test of whether or not
the instructions have been accurately followed. Since here only the
distance C­c# has been used, along with the tirangle CDE (Fig. 6), all the
rest are found without difficulty; so one sees immediately whether or not
the points d, d#, F, a, and c of Figure 6 match the d, d#, P, a and c found
otherwise, in Figure 5. If so, the draftsman can be sure that he has
determined a perfect equal temperament, and one which satisifes not
only the ear, but also the intellect, insofar as our hands and tools can
accomplish. Otherwise, on the contrary, he sees clearly that he has
deviated from accuracy, and must start anew.

Once a single line has been divided in this proportion, then any other
length, be it shorter or longer than the one already divided, can be
similarly divided without undue trouble. Given a line XW divided in
equal temperament (Fig. 7), and required to divide a shorter line XY or a
longer one XZ in the same proportions. Attach XY or XZ to XW at any
arbitrary angle YXW or WXZ. Then draw parallels from C, c#, c, c#, etc.,
and any shorter line XY or longer one XZ will be identically divided into
equal temperament, as is easily seen.29

28 So there can (and probably will) be some inaccuracies. Mendelssohn makes no mention of
the errors which can creep into the construction owing to the thickness of the lines drawn,
but speaks only of the inaccuracies of the draftsman himself. Yet the errors which might
be introduced by assuming a line to have zero thickness are probably as great as that of
the 17:18 approximation (see fn. 7),if not greater: the error of this approximation will
reach only 0.3 mm (a reasonable thickness for a carefully drafted line) in 50 cm. A
comparisonof Newton's construction with that of Hero will show that Newton's method
has smaller angles, and so the points of intersection of the lines forming these angles are
less clearly defined. Nevertheless, with the Newton/Mendelssohn construction "the mind
has been satisfied," and this is what was important to Mendelssohn the philosopher and
mathematician.

29 This paragraph and the accompanying Figure 7 are found only in Kirnberger's reprint
(Construction der gleich­schwebenden Temperatur, ed. Johann Philipp Kirnberger, Berlin:
Birnstiel [n.d., but before 1767]) of the essay; this edition also omits Marpurg's
introduction. The added paragraph might possibly be attributed to Kirnberger himself.
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INTRODUCTION

[by F. W. Marpurg]

The debate concerning the advantages of one unequal temperament or
another has ended since Neidhardt began to acquaint us with equal
temperament.30 It has been found that noneof them is useful, and that in
keys where the small and large semitones31 are to have the same size, all
the notes between 1 and 2 must follow a geometric proportion. Much
effort has been spent in calculating an equal temperament in various
ways, e.g., (1) by means of extracting roots; (2) by equating the cycles of
fifths and fourths; (3) by a geometric division of the ditonic comma; (4)
by an arithmetic division of the same; (5) by a geometric division of the
syntonic comma into eleven parts; (6) by an airthmetic division of the

30 Hopeful but of course untrue. The debate continued, with aestheticians and practicing
musicians joining theoreticians in championing or denouncing equal temperament, whose
proponents won, but only defacto, not before the last half of the nineteenth century.
Opponents usually cite the harshness of the mistuned thirds and the irrationality of the
ratios as against the. chords and ratiosof one variety or anotherof just intonation; they
also bemoan the loss of differences between keys and modes in equal temperament. Here
are a few examples. Francois Bedes de Celles (L'Andu facteur d'orgues, 1776­1778):
"With the new [equal] temperament, all the keys being the same, they express everything
equally, and there is nothing to compensate for the harshnessof the thirds" (Steblin 1981:
65­66). Charles Earl Stanhope ("Principles of the Science of Tuning Instruments with
Fixed Tones," Philosophical Magazine 25 [1806]: 17): "In the Equal Temperament ...
everything is discord." John Broadhouse (Musical Acoustics, London: Reeves [around
1840]): "Equal temperament ... can never be used for any scale which can be called
musical, according, at any rate, to the demands of modern harmony, as developed since
the time of J. S. Bach ... If the semitones are [tempered equally] ... music would be
impossible" (p. 363). Danielou (1943: 219­220): ".. the artificial temperate scale [equal
temperament] ... has twisted the development of modern musical thought in ... a strange
direction." Much the same is the criticism of Levarie and Levi (1968). But equal
temperament is now the rule; Arthur von ottingen (Das duale Harmoniesystem, Leipzig,
1913; cited in Rummenholler [1967]), has this to say: "unser Ohr alles an einer reinen
Stimmung Fehlende erganzt ... keine noch so lange ubung und Gewohnheit macht es uns
moglich, ohne Klavierbegleitung temperiert zu intonieren. Daraus folgt, dass die reine
Stimmung [ist] der Untergrund unserer hoheren Empifndungen, psychischen Vorstellun­
gen und musikalischen Wahrnehmungen .''
At the time of Mendelssohn's essay, Marpurg favored equal temperament, while
Kirnberger was opposed (see fn. 32). Marpurg's answer to the objections was. "muss der
Componist den Charakter seines Tonstiicke, die Ausbildung einer Leidenschaft, die Kraft
des Ausdrucks, aus ganz andern Quellen als aus der schopferischen Kraft des
Stimmhammers oder Stimmhorns herholen" (Versuch u'ber die tnusikalische Temperatur,
Breslau, 1776, p. 194). For an introductory discussion of some of the unequal
temperaments proposed and/or used, see Bailhache (1989).

31 I.e., chromatic and diatonic.
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same into the same number of parts; (7) by use of the rational numbers
of the major chord 6:5:4:3 (Kritische Birefe iiber die Tonkunst, sections
39­41); (8) by an arithmetic partition of the diesis 125:128; (9) by a
geometric division of the same; (10) by an arithmetic division of the
smaller commaof the third 625:648; (11) by a geometric divisionof the
same; and so forth.32
Although an equal temperament reckoned in such a manner gives the ear
all possible satisfaction, yet because of the break33 appearing at the end
one cannot claim that any one of them completely satisfies the eye [as
well], except for number 7. I ignore the differences found in the last
[decimal] places owing to the varied methods of solution, if one rejects
these. Mr. Kirnberger, himself oneof our finest composers, was aware of

32 The ditonic comma (Marpurg's #3) is the ratio of six major tones (8:9) to the octave (1:2),
or 524288:531441. The syntonic comma (#5) is 80:81, or the ratioof two tonesof 8:9 to the
major third 4:5. The diesis (#8) 125:128 (commonly called the lesser diesis) is the ratio of
the octave to three major thirds (4:5). The smaller comma (or greater diesis) 625:648 ("10)
is the ratioof four minor thirds (5:6) to the octave. Another small interval, not mentioned
by Marpurg in this list, is the schisma (32768:32805), the ratioof the octave to four major
tones plus a major third, or of the syntonic comma to the ditonic comma(see App. Illb for
an indirect mention of this).
Dividing the syntonic comma into eleven parts (*5) is roughly equivalent to dividing the
ditonic comma into twelve parts (#3), as the ratio of the two commas is about 11:12
(21.506 cents to 23.460 cents).
The 6:5:4:3 ratio (#7) is used by Schroter; it is reported by Marpurg (Versuch iiber die
musikalische Temperatur, pp. 179 ff.), along with many other temperaments.
An arithmetic division of an interval leads to unequal steps; for example, 1 6: 18( = 8:9) is
divided arithmetically into 16:17 and 17:18. Musically equal steps are obtained by
geometric division; equal temperament is sometimes called geometric temperament.

33 Probably an allusion to the non­closure, after 12 steps, of the "cycle" of Pythagorean
fifths and analogous "gaps" in these methods (the "errorofclosure" amounts to a ditonic
comma; see n. 32).

34 Kirnberger, in vol. Iof his Die Kunst des reinen Satzes in der Musik (Berlin, 1771), gives
the good news ifrst: "[With equal temperament] It is possible to play with almost complete
purity in all the major and minor keys." But then he continues:

First of all, it is impossible to tune in equal temperament without a monochord or
something that takes its place. Consonant intervals can be tuned pure by the ear
alone, but the dissonant ones cannot be found precisely. Second, the diversity of keys
is eliminated by equal temperament... Thus nothingwas...gained;. ..a great deal was
lost [p. 11].

Kirnberger's second objection to equal temperament refers to the loss of differences in the
characters of the modes, arising from the fact that in non­equal temperament "the quality
of the intervals changed whenever a different note was used as a ifnal" [p. 3]. (He expands
on these differences in vol. II (1779), pp. 70­76.) The third point he makes is that intervals
should be such that a melody proceeds in "pure" intervals insofar as possible. [The
translation and page numbers here are those of the English version (Beach and Thym
1982(.[
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this imperfection in our equal temperament 34 and wished to see an equal
temperament for the monochord which would please ear and eye alike;
he happened to read what Neidhardt wrote in his Sectio canonis
harmonici concerning geometric constructio with regard to temperament.
He took the opportunity to discuss this with an astute mathematician
whose name I am not at liberty to give, and to ask himwhether what Mr.
Neidhardt only touched on superifcially might not be examined more
closely; and perhaps a practical rule could be formulated which would be
more satisfactory than the arithmetical approach. Mr. Kirnberger5s
learned friend took the project upon himself, and after a little effort had
the pleasure of solving the riddle and of closing the gap left by Mr.
Neidhardt. Here is his essay on the subject, which so honors him by its
excellent insights that it will please not only adeptsof equal temperament
but also mathematicians.

APPENDICES

Appendix I. A Second Luthiefs Rule
Instead of the common 17:18 approximation to the equal­tempered
semitone, some builders and players of fretted instruments used another
rule­of­thumb method of division, not so accurate but perhaps easier to
implement. The procedure has six steps:

1) Bisect the string; this gives the octave, with the entire length being the
prime.
2) Bisect the string's half; this gives the fourth.
3) Tirsect the string; the 2/3 point gives the iffth.
4) Bisect the segment between the fourth and the iffth; this gives the tritone
or augmented fourth.
5) Divide the segment between the fourth and the prime into ifve
airthmetically equal parts for the semitones between those notes.
6) Divide the segment between the iffth and the octave into ifve equal parts
for the semitones between those notes.

Thus, if the full string length is 120, the divisions will fall at:
(Step 1) 60;
(Step 2) 90;
(Step 3) 80;
(Step 4) 85;
(Step 5) 96, 102, 108, and 114; (Step 6) 76, 72, 68, and 64.
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The diatonic notes of the resulting scale are in just intonation, except
that the major second (tonic to supertonic) has the ratio 9:10 rather than
8:9. The chromatic notes are indifferent approximations to equal
temperament, and there are six different sizes of semitones, ranging
from 89 to 112 cents.

A comparison with the pitches in the 17:18 tuning shows that the
latter is closer to equal temperament, except in the intervals of the
fourth, the tritone (or diminished iffth), the iffth, and the octave. This is

seen in the following table, where for convenience the open string is

assumed to produce C.

Note String Ratio to C Cents Cents for:
Length 17:18 equal

C 120 1:1 0 0 0
± 114 19:20 88.80 98.95 100

D 108 9:10 182.40 197.91 200

+ 102 17:20 281:36 296.86 300

E 96 4:5 386.31 395.82 400
F 90 3:4 498.04 494.77 500

± 85 17:24 597.00 593.73 600

G 80 2:3 701.96 692.68 700

± 76 19:30 790.76 791.64 800

A 72 3:5 884.36 890.59 900
± 68 17:30 983.31 989.55 1000

B 64 8:15 1088.27 1088.50 1100
C 60 1:2 1200 1187.46 1200

; One should remember that the stretching of a lute string caused by its
(left­hand) ifngering will, for all practical purposes, obviate these
deviations from equal temperament in both methods, as will the loss
of tension resulting from plucking the string while playing.

Appendix II. Constructible Approximations to the
Equal­tempered Semitone
The twelfth root of 2 equals, to 12 decimal places, 1.053946309436, and
is by definition 100 cents, or an equal­tempered semitone. The following
table lists a number of rational and quadratic constructible approxima­
tions to this value, along with their ifrst proposers where known (in some
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cases the approximation listed has been calculated from some interval
other than the semitone). They are listed in order of decreasing error.
The best ones are accurate enough to have pleased Mendelssohn's ear
but of course not his eye.

Approximation Decimal Value Cents Error (cents) in

semitone octave

18/17 1.058824 98.9546 ­1.05 ­ 12.5

512/483 1.060041 100.9447 +0.94 +11.3

53/50 1.060000 100.8771 +0.88 +10.5

16^43/99 1.059788 100.5309 +0.53 +6.4

8/^/57 1.059626 100.2660 +0.27 +3.2

Mersenne 1636 125/118 1.059322 99.7695 ­0.23 ­2.8

Mersenne 1636 \J(3­­J2) 1.059328 99.7794 ­0.22 ­2.6

Hammond 1934 3692/3485* 1.059397 99.8927 ­0.11 ­1.3
Ellis 1885 89/84 1.059524 100.0992 + 0.10 + 1.2

Cahill 193? 755/7 1.059457 99.9899 ­0.010 ­0.12
196/185** 1.059459 99.9941 ­ 0.006 ­0.071

To these may be added Lambert's astonishingly accurate approxima­
tion (advocated by Kirnberger in Section 18 of his Kunst des reinen
Satzes; Kirnberger claimed that one could tune a clavier in a few minutes
by Lambert's method, without the aid of a monochord), produced by
ascending seven pure iffths (of 3:2) and a pure major third (of 5:4), then
reducing by four octaves; the resulting ratio, 10935:8192, is almost
exactly an equal­tempered fourth above the starting note. (If eight rather
than seven iffths are added to the major third before octave reduction, an
approximate octave is obtained, which differs from the true octave by
the schismamentioned in n. 32.) The semitone between this value and y/2
(the equal­tempered tritone, easily constructed) has the ratio

♦ Laurens Hammond needed rational approximations for all the notes of the chromatic
octave for his Hammond Electric Organ, which depended on integral gear ratios for
producing the tones. A full list and discussion of his ratios can be found in Barbour (op.
cit.), pp. 74­76. The semitone in the table above was calculated from his C and C"/Db; other
semitones of the scale vary slightly from the tabulated value.

♦♦ To my knowledge, the 196/185 approximation has not been published previously.
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1.0594629377, or 99.999744 cents, for an errorof only 0.003 cents in the
octave. It is curious and somewhat ironic that Kirnberger, who argued
against equal temperament, should have publicized the most accurate
approximation of all; Marpurg called this "Kirnbergerius contra
Kirnbergerium".

Appendix III Mendelssohn5s Figures

c

A'
bI G \/s /

Fiy.g

Appendix Ilia. x
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Appendix HIb.
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